Institut des
NanoSciences de Paris
Accueil > Evénements > Séminaires > Archives 2017 > Cavitation bubble dynamic

Séminaire « Matière molle : organisation et dynamique » de l’INSP

Cavitation bubble dynamics in artificial and natural systems - Xavier Noblin - Jeudi 30 mars 2017 à 11 h

INSP - 4 place Jussieu - 75252 PARIS Cedex 05 - Barre 22-32 - 4e étage, salle 407

Xavier Noblin - Institut de Physique de Nice (INPHYNI)


The nucleation and growth of vapor bubble in a stretched liquid medium is a common phenomenon along boat helices. Main studies on cavitation in water under tension concern then hydraulics, or acoustic conditions. Quasi-static conditions can also be used, they are observed naturally in the sap conducting network of trees (xylem) or ferns sporangia where negative pressures lower than -100 bar are used in this catapult-like elastic beam [1]. It has also been observed in synthetic trees [2]. All these systems are compartmented and the way cavitation nucleation interacts between neighbouring cells or cavities remain poorly understood. We observed that in the ejection of fern spores, the catapult mechanism is triggered by a very fast collective nucleation of bubbles in all the cells. We study this mechanism in hydrogels-based biomimetic devices. They are made of 2D networks of water-filled cavities using soft lithography and pHEMA-MMA hydrogels. We found that the nucleation of one bubble, that comes out randomly, can trigger subsequently the nucleation of several (up to hundreds) bubbles. We have also developed theoretical model and numerical simulation. Our results explain why the fern sporangium catapult can be so efficient since all the cells can cavitate in a few microseconds, it can also give insights in the way cavitation propagate in the microfluidic sap-networks in trees.

[1] X. Noblin et al., The fern sporangium : a unique catapult, Science (2012).
[2] T. D. Wheeler and A. D. Stroock, The transpiration of water at negative pressures in a synthetic tree, Nature (2008).